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The effect of bubbles on developed turbulence
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Hot-film anemometry measurements are performed in a fully developed turbulent
bubbly flow. For the bubble detection in the signal, both a threshold method and a
new pattern recognition algorithm are employed. The measurements are carried out
with gas fractions up to 3 % and a mean water velocity of 0.20 m s−1, corresponding
to a Reynolds number of about 9 × 104. The typical bubble radius is 1–2 mm, corres-
ponding to 10–20 Kolmogorov length scales. In this regime, a ‘bubblance’ parameter b

which compares the kinetic energy originating from the rising bubbles with that of the
turbulence fluctuations is smaller than 1. Probability distribution functions, structure
functions (with and without the extended self-similarity (ESS) method), and spectra of
the water velocity time series are calculated. Both our results for the turbulent energy
spectra and the second-order structure functions show qualitative agreement with
numerical results by Massitelli, Lohse & Toschi (Phys. Fluids, vol. 15 (2003), p. L5),
i.e. a more pronounced energy enhancement on small scales than on large scales
owing to the presence of bubbles, leading to a less steep slope in the spectrum as
compared to the Kolmogorov −5/3 law. These results are robust, i.e. do not depend
on details of the bubble detection scheme.

1. Introduction
1.1. How do bubbles modify the turbulent energy spectrum?

The statistics of velocity fluctuations in developed turbulence is well known from
various experiments and numerical simulations. The probability distribution functions
of velocity increments show an increasing flatness with decreasing length scale,
reflecting the intermittent nature of the signal. Correspondingly, the scaling exponents
of the velocity structure functions display (slight) intermittency corrections to the
Kolmogorov results, and so does the scaling exponent −5/3 of the velocity power
spectrum. For a summary of the present understanding, see Frisch (1995) and Pope
(2000) or Sreenivasan & Antonia (1997).

This paper addresses the question how bubbles affect the velocity fluctuations in
fully developed turbulent flow by performing hot-film anemometry in turbulent bubbly
flow.

The reported results in the literature so far are inconclusive. The experiments of
Lance & Bataille (1983, 1991), Wang et al. (1990) and Michiyoshi & Serizawa (1984)
with relatively large bubbles of up to half a centimetre diameter show that, for an
increasing gas fraction α, the Kolmogorov energy spectrum exponent −5/3 is progres-
sively substituted by −8/3. It is argued that the steeper spectrum originates from
immediate dissipation of the energy production within the bubble’s wakes. In contrast,
Mudde, Groen & van den Akker (1997), Mudde & Saito (2001) and Cui & Fan
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(2004) found the classical −5/3 power law in a bubble column even for a gas volume
fraction of 25 %. Mudde & Saito (2001) found this classical exponent −5/3 also for
turbulent pipe flow. We have summarized a selection of previous results and our new
experiments and numerical simulations in table 1. This table focuses on papers dealing
with the spectral exponent; further numerical simulations on bubbly turbulence can
be found in e.g. Climent & Magnaudet (1997, 99); Druzhinin & Elghobashi (1998);
Murai & Matsumoto (2000); Druzhinin & Elghobashi (2001); Maxey, Chang & Wang
(1994). For a summary of work up to 1995, we refer to Serizawa & Kataoka (1995).

1.2. Results on the power spectrum

Our main finding here will be a slightly less steep power spectrum as compared to
the Kolmogorov −5/3 law. This result is in qualitative agreement to the numerical
results by Mazzitelli, Lohse & Toschi (2003a, b) for microbubbles (diameter of several
Kolmogorov scales η) in homogeneous nearly isotropic turbulence.

We realize that comparing the results of the numerical work with the current
experiments poses several problems, owing to the different forcing conditions of the
turbulence, to different degrees of turbulence and isotropy, and, in particular, to the
larger bubble size in the experiments. However, in our experiments, the bubbles are
still relatively small compared to inertial turbulent length scales, i.e. typically, about
10–20η for the bubble radius. Besides, we did not observe strong deformations of
the bubbles. Therefore, we argue that the dominant effect of the bubbles is a rather
localized forcing due to their buoyancy. Hence, comparing the current work with the
numerical work of Mazzitelli et al. (2003a, b), which assumed a delta-type forcing due
to the rising bubbles, is still useful.

There is, however, one qualitative difference between the presented experiments and
the numerical simulations of Mazzitelli et al. (2003a, b): The simulations suggest that
there is an energy input at small scales, but an energy reduction at large scales, which
together lead to the less steep spectrum. The energy increase at the small scales is
caused by the direct forcing through the bubbles, while the reduction of the energy
at large scales is caused by a bubble accumulation at the downward flow side of the
vortices, which is mainly a lift-force effect.

As stated already above, in the presented experiments we also find the less steep
spectral slope, but it originates from a strong spectral enhancement at small scales and
a weaker spectral enhancement at large scales. The reason for this difference is that in
our presented experiments the massive injection of rising bubbles made it necessary
to enhance the pump strength to guarantee a sufficiently large downflow velocity so
that hot-film anemometry remains meaningful. The enhanced pump strength led to
an energy enhancement on all scales. In contrast, in the numerical simulations the
external large-scale forcing was kept fixed.

Van den Berg, Luther & Lohse (2005) have overcome this problem in a new
series of experiments with the Twente water channel, where small concentrations of
microbubbles (about 50 times smaller than the bubbles used here) were injected in the
flow upstream and all other flow parameters were kept fixed. Indeed, then a reduction
of the large-scale and an enhancement of the small-scale spectral power is found, just
as in the numerical simulations by Mazzitelli et al. (2003a, b).

That the overall turbulence intensity can be reduced through the injection of bubbles
has been known for a long time, see Serizawa, Tsuda & Michiyoshi (1975) and for a
summary Serizawa & Kataoka (1995). The focus of this work is on the effect of the
bubbles on the smaller scales and in particular on the spectrum.
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Authors Flow Method Re Reλ Rb/mm Reb Rb/η α(%) b Spectral exponent

Lance & Bataille (1983), Grid generated Hot-film 1 × 104 35 3 700 6 0–3 0–15 −5/3 for small b,
Lance & Bataille (1991) turbulence, −8/3 for large b

co-flow
Michiyoshi & Serizawa (1984) Pipe flow Hot-film 0–20 ≈ −8/3
Wang et al. (1990) Pipe flow Hot-film 6 × 104 0–25 ≈ −8/3
Mudde et al. (1997) Bubble column LDA 0 0 1.5 400 – 0–25 ∞ ≈ −5/3
Mudde & Saito (2001) Pipe flow Optical fibre 3 × 104 2 500 5.5 5 ≈ −5/3
Mudde & Saito (2001) Bubble column Optical fibre 0 0 2 500 – 5.2 ∞ ≈ −5/3
Larue de Tournemine (2001) Channel flow Hot-film 7 × 104 1 250 0–8 % 0–15 ≈ −5/3
Mazzitelli et al. (2003a, b) Spectral Navier– Two-way – 60 0.1 1–6 1 0–1.6 0–0.02 Slightly less steep

Stokes code coupling than −5/3
Mazzitelli & Lohse (2005) Spectral Navier– Two-way 0 0 0.1 2 – 0–3.2 ∞ After transients ≈

Stokes code coupling −5/3
Cui & Fan (2004) Bubble column LDA, PIV 0 0 3 700 0–20 ∞ ≈ −5/3
van den Berg et al. (2005) Grid generated Hot-film 9 × 104 240 0.1 2 1 0–0.3 0–2 × 10−3 Slightly less steep

turbulence, than −5/3
co-flow

Present work Grid generated Hot-film 9 × 104 240 1–2 250–500 10–20 0–3 0–1 Slightly less steep
turbulence, than −5/3
counter-flow

Table 1. Summary of experimental and numerical results on spectra in bubbly turbulence. Re is the flow Reynolds number without the bubbles,
Reλ the corresponding Taylor–Reynolds number, Rb is the bubble size, Reb =RbUR/ν the bubble Reynolds number of a rising bubble in clean
still water, η the Kolmogorov length scale, α the gas fraction, and b the bubblance parameter defined in (1.1). If data could not be extracted from
the publication, we left the column blank. – The table does not aim at completeness.
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1.3. Bubblance parameter

How do we explain that some measured spectra in bubbly turbulence such as those
by Lance & Bataille (1991) show a steeper slope than −5/3, whereas others, including
ours here, show a less steep slope? The differences in the various experiments and
numerical simulations may be rationalized by differences in the employed bubble
sizes and in the flow situations. In particular, it is important to compare the energy
associated with the perturbations of the liquid through the bubbles with the typical
turbulent kinetic energy in the absence of bubbles. The first energy is referred to as the
pseudoturbulent contribution and is of the order of αCAU 2

R (van Wijngaarden 1998),
where CA = 1/2 is the added mass coefficient and UR is the rise velocity of bubbles
in still water. The turbulent kinetic energy in the absence of bubbles is estimated by
u′2, where u′ = u′

z(α = 0) is the typical vertical velocity fluctuation. We call the ratio
of these kinetic energies ‘bubblance’ parameter b,

b =
1
2
αU 2

R

u′2
0

. (1.1)

For homogenous and (nearly) isotropic turbulence, the bubblance parameter b can
be related to the often used parameter β = u0/UR , where u0 is the large-scale r.m.s.
velocity, namely b ∝ α/β2. For b < 1, we are in the turbulence-dominated regime (with
b =0, no bubbles, in the limiting case), and for b > 1, we are in the pseudoturbulent
regime where the flow is mainly driven by the rising bubbles (with b = ∞, bubbles in
initially still water, as the other limiting case).

How are the values for the bubblance parameter b and the spectral slope correlated,
if at all? In table 1, we have included our estimates for the bubblance parameter b

for the various experiments and numerical simulations. For b < 1, Lance & Bataille
(1991) found a power law exponent of −5/3. This power law exponent is progressively
substituted by −8/3 when the pseudoturbulent contribution becomes dominant, b > 1.
The measurements of Mudde et al. (1997) are restricted to the wall region, where
turbulence production is strong, presumably leading to a turbulence dominated regime.
Also in the case of Mazzitelli et al. (2003a, b) we have b < 1, as the turbulence is
relatively strong and only microbubbles with a slow rise velocity are injected. The
experiments presented in this paper will also turn out to have a bubblance parameter
b < 1, i.e. we are in the turbulent-dominated regime and we expect that the bubbles
modify only the spectra and structure functions.

So, can the regime b < 1 be associated with a spectral slope (close to) −5/3 and
the regime b > 1 with a spectral slope (close to) −8/3? From table 1, we clearly
have to conclude that this is not the case. The bubble column experiments in table 1
all start with the fluid at rest; the flow is excited exclusively by the rising bubbles,
i.e. b = ∞. Nonetheless, the spectral slope is close to −5/3. The same holds for the
pseudoturbulence simulation of Mazzitelli & Lohse (2005). So there must be further
yet unknown conditions for the −8/3 regime to occur. We will come back to this in
the conclusions.

1.4. Results on probability density functions (PDFs) and on velocity
structure functions

Apart from in the spectrum, the modifications of the velocity fluctuations by the
bubbles will also reflect in further statistical observables.

(i) The velocity structure functions of second order are basically the Fourier
transformation of the power spectrum (Pope 2000). We therefore also find a decreased
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slope as compared to the Kolmogorov value 2/3. Note that in practice, the Fourier-
transformation from the spectrum to the second-order structure function is difficult
because of finite size effects (Lohse & Müller-Groeling 1995, 1996).

(ii) Higher-order velocity structure functions show slightly enhanced intermittency
in bubbly flow as compared to single-phase flow. Since the structure functions as a
function of the length scale r show only poor scaling properties for the low Reynolds
numbers of most experiments, including ours here, we have to analyse the so-called
extended self-similarity (ESS) plots, where one structure function is plotted versus
another one (Benzi et al. 1993; Briscolini et al. 1994). For visualization of different
intermittency, compensated extended self-similarity plots have turned out to be useful
(Grossmann, Lohse & Reeh 1997b, a).

(iii) Another important finding is that the extended self-similarity property vanishes
in two-phase flow, owing to the small-scale energy input by the bubbles.

(iv) The most direct way to access intermittency is to measure the probability
density functions (PDF) of the velocity increments. The intermittency shows up in
increasing tails of the PDF with decreasing length scale, see e.g. Belin, Tabeling &
Willaime (1996). Here the enhanced intermittency of bubbly flow as compared to
single-phase flow reflects in more pronounced wings of the PDFs of the small-scale
velocity increments. Note that the tails of the PDFs are probed by high-order velocity
structure functions and the peak is probed by low-order velocity structure functions.

1.5. Signal processing

The main problem in turbulence bubbly flow is the velocity data acquisition. We
chose hot-film anemometry as it can be applied even if the gas-fraction is of the
order of a few per cent. In contrast to laser-Doppler anemometry (LDA) and particle
image velocimetry (PIV), the data rate that can be obtained in the bulk of bubbly
flow is still sufficient to estimate energy spectra. (Note, however, that very close to
the boundaries of bubbly flow, LDA has successfully been used (Mudde et al. 1997).)

However, hot-film anemometry also has various problems in turbulent bubbly flow.
The most serious problem is the appearance of disturbances in the hot-film signal
owing to bubble–probe interactions. These spiky structures in the hot-film signal are
caused by the interaction between the hot-film probe and the bubbles and do not
contain information on the water velocity. They simply reflect that the heat conduc-
tivity of the bubbles touching the probe is less than that of the water. We test two
methods of bubble spike detection: a common threshold method and a new pattern-
recognition method by Luther & Rensen (2004) and Luther et al. (2005). None of
these methods is perfect; however, the results we obtain are robust.

We may hope that applying the ESS method to probe signals with some remaining
bubble signatures may help, as the effect of bubbles in velocity structure functions of
different order may cancel out. However, we will show that the bubble signatures in
the signal affect different velocity structure functions in different ways, so that this
method cannot be used here.

A second less serious problem of hot-film anemometry in bubbly flow is the need
for signal-processing algorithms that are able to estimate structure functions, PDFs
and spectra while some data points of the time series are missing, namely those
periods when a bubble had touched the probe, thus corrupting the signal. We will
offer solutions to this problem in this paper.

Finally, the calibration of the hot-film anemometer is changing on a time scale of
minutes because of pollution of the sensing element. We overcome this problem by a
continuous calibration of the hot-film anemometer.
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Figure 1. (a) Schematic picture of the Twente water tunnel. (b, c) Side and top view of a
bubble injection island. Nine of these islands are installed at the bottom of the channel.

1.6. Organization of the paper

The structure of this paper is as follows. In § 2, the experimental set-up and the
instrumentation are described. In § 3, we introduce the signal-processing algorithms
and discuss their robustness and accuracy. The main findings and results on PDFs,
structure functions and spectra are presented in § 4. An extended summary, conclusions
and an outlook are given in § 5.

2. Experimental set-up and measurement techniques
2.1. Water tunnel

The water tunnel is depicted in figure 1. The tunnel has a measurement section
with a cross-section of L × L = 0.45 × 0.45 m2 and a height of 2m. Deionized water
is pumped vertically downwards through the measurement section by a 17.6 kW
elbow pump (Egger RPP 300). The angular speed of the pump propeller is controlled
by a frequency converter (Danfoss VLT 175 H 1238ST). The mean water velocity
is measured by an electromagnetic flow meter (Danfoss Magflo Mag3100). A filter
(Spirotech Spirovent) has been installed to diminish pollution of the water. Volume
flow rates up to 0.1 m3 s−1 can be achieved. The water tunnel is supplied with an
active computer-controlled grid that enhances the turbulent intensity. Owing to the
active grid, large Taylor–Reynolds numbers up to Reλ = 200 can be achieved while
the transverse homogeneity of the flow remains satisfactory. In figure 2, we can
see the power spectral density of the vertical velocity of a single-phase flow in the
tunnel measured by hot-film anemometry. The figure shows a nearly constant scaling
exponent of about −5/3 over almost two decades. For more details on the tunnel and
the active grid, we refer to the work of Poorte (1998) and Poorte & Biesheuvel (2002).
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Figure 2. Power spectral density plot and compensated power spectral density plot (inset)
vs. the dimensionless frequency ν∗ = νUz/L for a single-phase flow with Re ≈ 9 × 104. ν is the
frequency, L the width of the tunnel and Uz the average water velocity.

Below the measurement section, air bubbles are injected by orifices. The size of
the bubbles is controlled by mass-flow controllers (MKS 1559A) with ranges from
1 up to 100 slm (standard litre per minute) and by the sizes of the orifices (Oguz &
Prosperetti 1993). The orifices have lengths of 5 cm and inner diameters of 0.5 mm. In
total, 621 orifices are distributed over 9 islands, see figure 1. The air supply to every
island can be switched on or off separately. The islands are installed in a 3 × 3 matrix
below the contraction under the measurement section. The bubble size and the flow
velocity are chosen such that most of the bubbles rise upwards. Gas fractions up to
10 % can be achieved. Measurements with a four-point optical probe showed that the
diameters of the bubbles Db = 2Rb are in the range of 2 to 5 mm. The relative rise
velocity UR of the bubbles is assumed to be about 0.23 m s−1 (Clift, Grace & Weber
1978). Validation of the homogeneity of the mean flow velocity after the installation
of the islands has been successfully performed using LDA.

2.2. Measurement techniques

We used a Dantec constant-temperature hot-wire anemometer system (90N10 frame
and 90C10 module) and the Dantec streamware software (V2.05) to measure the local
vertical water velocity in the measurement section. We used a Dantec 55R11 hot-film
probe, which has a cylindrical quartz rod with a diameter of 70 µm diameter, a total
length of 3 mm, and a sensitive length of 1.3 mm. Owing to the boundary layer and
the protective quartz coating, the frequency bandwidth is limited to about 1 kHz.
The hot-film probe was mounted in the centre of the measurement section of the
tunnel 50 cm below the active grid. The signal of the hot-film probe was sampled with
6 kHz at a resolution of 12 bits by an AD-card (National Instruments BNC-2090 and
PCI-E6023). This relatively high sampling rate was chosen because we had initially
hoped to be able to measure relatively high frequencies in the signal. The hot-film
anemometer was calibrated with a Dantec backscatter LDA system. We used a 4W
Argon ion laser (Spectra Physics Stabilite 2017). The bursts were analysed using
Dantec software (BSA flow V1.4).

The temperature of the water was monitored by the temperature probe of the
stream-ware system and by a Silicon PTC temperature sensor. To determine the
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∆h

LU-tube

Tunnel

U-tube

Figure 3. U-tube set-up to measure the gas fraction α. The distance between the two
connection points between the U-tube and the channel is LU-tube, and the difference in
the water column height in the U-tube is �h.

gas fraction, the pressure difference between two points at different heights in the
measurement section was measured. A U-tube was used for this purpose (figure 3).
As the flow is homogeneous and the velocity along the channel is constant, the gas
fraction can be obtained as

αU-tube = �h/LU-tube,

where �h and LU-tube are defined in figure 3.
To measure the typical size distribution of the bubbles produced by the islands, a

four-point optical-probe (Mudde & Saito 2001) was used. As the probe was at our
disposal for only a short period of time, it was not used during the final experiments
which produced those velocity time series on which the data in this paper are based.

Despite several measures to prevent electrical noise, some noise was still present
in the hot-film signals. Most of the energy content of the remaining noise was in
frequencies higher than those we were interested in, and therefore the remaining noise
did not have a significant effect on the spectra and PDFs. In order to obtain well-
behaved structure functions in the small-scale regime, we filtered out the remaining
noise by a 10th-order Butterworth low-pass filter. The cutoff frequency of the filter
was set at 300 Hz.

2.3. Measurement conditions

2.3.1. Flow parameters

The parameters of our various experiments with different volume fraction of
bubbles are summarized in table 2. We used a volume flow rate of 4 × 101 l s−1,
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Uz (m s−1) Re α (%) u′
z (m s−1)

u′
z

Uz

L11 (m) λf (m) η (m) ε (m2 s−3) b

0.20 8.9 × 104 0 0.026 0.13 0.076 0.0092 1.5 × 10−4 0.0020 0
0.20 9.0 × 104 0.5 0.033 0.17 0.018 0.0041 1.2 × 10−4 0.0052 0.2
0.20 9.1 × 104 0.7 0.035 0.17 0.029 0.0039 1.1 × 10−4 0.0060 0.3
0.21 9.6 × 104 1.0 0.039 0.18 0.049 0.0038 1.1 × 10−4 0.0081 0.4
0.21 9.5 × 104 1.5 0.047 0.22 0.067 0.0038 9.4 × 10−5 0.013 0.6
0.20 8.8 × 104 2.0 0.052 0.27 0.068 0.0035 9.0 × 10−5 0.015 0.8
0.20 8.8 × 104 2.9 0.079 0.40 0.084 0.0036 7.3 × 10−5 0.036 1.1

Table 2. Flow parameters: Uz is the mean vertical downward water velocity, α the gas
fraction, u′

z is the standard deviation of the vertical water velocity, L11 is the longitudinal
integral length scale, λf is the Taylor microscale, η is the Kolmogorov length scale, ε is the
dissipation rate, and b is the bubblance parameter defined in (1.1). The typical bubble radius
is always Rb = 1 − 2 mm, i.e. typically, 10–20η.

which corresponds to a mean downward vertical velocity in the measurement section
of 0.2 m s−1. The Reynolds number Re of this flow was of the order of 9 × 104.
The bubble Weber number was about 2 and the bubble Reynolds number is about
5 × 102. The Kolmogorov length η was of the order of 10−4 m. By the choice of
the mean vertical velocity, we considered the following. The mean vertical velocity,
should not be higher than the bubble slip velocity, as we wanted the bubbles to rise
upwards. Besides, we had to take into account the fact that a hot-film anemometer
only measures absolute velocities. This means that any upward velocity of the water
in the tunnel should be avoided. Therefore, the condition u′

z/Uz � 1 must be fulfilled,
where Uz and u′

z are, respectively, the mean and the standard deviation of the vertical
water velocity. Furthermore, we wanted to apply Taylor’s hypothesis, see also § 3.4,
which can also only be used under the condition that u′

z/Uz � 1. On the other hand,
the mean vertical water velocity Uz had to be much larger than the mean horizontal
velocities Ux and Uy , as otherwise the velocity measured by the hot-film anemometer
will be biased. In addition, high Reynolds numbers and thus high values of Uz,
are desired to be able to measure turbulent properties such as, for example, scaling
exponents. The velocity chosen is a compromise of the preceding requirements, which
are partly contrary to each other. For the experiments described in this paper, gas
fractions up to 2.9 % were used. Higher gas fractions were avoided as these would
have caused u′

z/Uz ≈ 1, which can be seen in figure 4. Besides, the data rate of the
LDA would have become too low to obtain a well-converged PDF of the water
velocity as measured by the LDA.

The bubblance parameter b given in table 2 is always smaller than one, signalling
that the turbulence is only modified by the bubbles, but not dominated by the kinetic
input due to the rising bubbles, as would be the case in pseudoturbulence. The table
also shows that the bubbles have a radius of about 10–20η. The size of the bubbles
is thus not too far from the viscous subrange.

2.3.2. Measurement time and convergence

How long must we measure to obtain well-converged velocity structure functions of
order p in turbulent bubbly flow? Whenever a bubble is passing in the neighbourhood
of the hot-film probe, a violent change in the hot-film signal is observed, either because
of the change in the heat-transfer when a bubble touches the probe, or owing to the
local velocity field around a bubble. As we used gas fractions of the order of a few
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(a) single-phase flow with Re ≈ 9 × 104 and (b) bubbly flow with Re ≈ 9 × 104 and α = 2.9 %
on the scales rz ≈ 8η (squares), rz ≈ 64η (circles), rz ≈ 512η (triangles) and rz = L = 4500η
(diamonds). To detect the bubbly spikes in the signal, the threshold method was applied
(see § 3.3.1). For both cases, the statistics is sufficient to obtain convergence of fourth-order
moments ∝

∫
s4 PDF(s) ds.

per cent, the changes in the signal only occur during a small fraction of the total
measurement time, i.e. these are rare events. Consequently, in order to obtain well-
converged moments, much longer time series are required in bubbly flow as compared
to single-phase flow. We performed measurements of 100 min for the single-phase-
flow situation and measurements of 150 to 250 min for the two-phase-flow situation.
Inspection of the PDFs of the higher moments of the velocity increments showed that,
for single-phase flow, this is absolutely sufficient to have well-converged sixth-order
moments, but for bubbly flow, we are only able to obtain well-converged fourth-order
velocity structure functions. In figure 5(a), the PDFs, weighted by the velocity incre-
ments to the fourth power, are shown as a function of the increment for a single-phase



Effect of bubbles on developed turbulence 163

flow and in figure 5(b) for a bubbly flow with α = 2.9%. The bubbly spikes in the
signals were removed before calculating the PDFs. Even on the smallest scales, that
plot displays clear maxima, and thus fourth-order moments can be calculated.

3. Signal processing
The classical method for detecting bubbles in a hot-probe signal is a threshold

method (Bruun 1995), in which all spikes in the derivative of the signal which are
larger than a threshold are defined as ‘bubbly spikes’. As pointed out by Luther &
Rensen (2004), threshold methods on the derivative cannot detect all bubbles in the
hot-film signal for our type of measurements because of the overlap in the PDF of
the derivatives of the hot-film signal of bubbly spikes and of the fluid signal itself.
This will be further discussed in § 3.3.3. Nevertheless, we decided to apply this method
so that we could make a comparison with previous work, in which threshold-based
methods have been used extensively. The alternative method which we will employ is
the pattern-recognition scheme developed in Luther & Rensen (2004). We will show
here that both methods essentially lead to the same physical conclusions, though
the detailed numbers will differ slightly. Before we elaborate on the bubble-detection
schemes, in the next subsection we report on the probe calibration.

3.1. Calibration

Hot-film anemometry is based on the relation between the heat convection from an
electrically heated sensing element to a surrounding flow and the velocity of this flow
(Bruun 1995). The heat flux from the sensing element is described by King’s law

E2
HF = A + Bun

z , (3.1)

where EHF is the voltage over the sensing element of the probe, uz is the local vertical
flow velocity, and A, B and n are constants that must be obtained by calibration.
A problem with the calibration of hot-film probes is that the heat flux from the
measuring part to the surroundings is very sensitive to temperature changes of the
flow and to contamination of the sensing element. This means that the calibration
of our hot-film probe was changing on a time scale of minutes. These changes
were caused mainly by pollution of the sensing element as the water temperature
was changing very slowly, because of the large heat capacity of the water and the
moderate changes in ambient temperature. Furthermore, sometimes a jump in the
hot-film signal occurred. These jumps were caused by cleaning of the sensing element
by bubble–probe interactions. These changes in the calibration had to be taken into
account, since we had to carry out long measurements to obtain statistically well-
converged results. For this purpose, we carried out LDA and hot-film measurements
simultaneously. The data rate of the LDA system was rather low, because of the
presence of bubbles in the optical path. However, thanks to the long duration of the
measurements, at least 400 samples for each data set could be collected. We used the
PDF obtained by fitting a Gaussian probability function to the normalized histogram
of the LDA velocity data, to calibrate the hot-film anemometer. The hot-film signal
was divided into parts with a duration of 2 min. For every time interval, a separate
calibration curve was obtained by minimizing the difference between the PDF of
the water velocity as obtained by the LDA measurement and the PDF of the water
velocity as obtained by the hot-film measurement. Equation (3.1) was used as a
calibration function. The variables A, B and n were used as the fitting parameters
for the minimization algorithm. Whenever sudden changes in the mean hot-film
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Figure 6. Typical examples of hot-film signals during bubble–probe interaction. In the figures,
time is plotted on the horizontal axis and the voltage on the vertical axis. The duration of the
shown signals is about 0.05 s.

signal were observed, the corresponding two minute time intervals were excluded
from further signal processing. The sudden changes were detected by inspection of
a running average of the hot-film signal. Also the bubbly spikes in the signal, as
detected by the methods to be described in § 3.3, were excluded from the calibration
procedure.

3.2. Bubble–probe interaction

The interaction between a hot-film probe and bubbles had already been investigated
by several workers (Delhaye 1969; Bremhorst & Gilmore 1976; Serizawa, Tsuda &
Michiyoshi 1983; Farrar & Bruun 1989; Bruun 1995). However, the case in which
bubbles rise upstream has, to our knowledge, not yet been considered. Hence, we
decided to study the bubble–probe interactions with the help of stereoscopic high-
speed imaging, simultaneously measuring the probe response. In this way, we obtained
a series of examples of the hot-film signal during bubble–probe interaction. In figure 6,
some of these examples can be seen. We may hope that specific features of these
signals are correlated with the dynamical interaction process between bubble and
probe, namely, to deduce from the hot-probe signal whether the bubble is penetrating
the probe, bouncing from it, or being split; however, we failed to find such correlation
(Rensen et al. 2004). The examples shown in figure 6 could, in principle, be used to
‘train’ the neural-network-type pattern-recognition scheme. We indeed tried to do so,
but as the flow in Rensen et al. (2004) is laminar and not turbulent as the flow we
want to analyse here, we eventually decided to create the training set in a different
way, see below.

The second result we obtained from the measurement in Rensen et al. (2004) is that
the determination of the gas-fraction as described in Bruun (1995) is not applicable in
our flow situation. For details on those experiments and the results of the stereoscopic
imaging, we refer to Rensen et al. (2004).

The third result of the stereoscopic imaging of rising bubbles interacting with hot-
film probes has already been published (de Vries et al. 2002b). In that paper we had
focused on the bubble-shape oscillations induced by the interaction with the probe,
which resulted in oscillations in the bubble rise velocity, and in velocity fluctuations
of the water around the bubble.

3.3. Bubble detection

To allocate the spikes caused by the bubble–probe interactions, two different methods
were used. The first was a threshold method and the second a pattern-recognition
algorithm. Results of both bubbly-spike detection methods are shown in figure 7.
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Figure 7. Detected bubbly spikes (solid lines) in a hot-film signal (dotted line) of a bubbly
flow with Re= 9 × 104 and a gas fraction of 1.0%. (a) Results for the case where pattern
recognition was applied to detect the bubbly spikes. (b) Results for the case where the threshold
method was applied.

Though most of the detected events are found with both methods, there are some
events – be they caused by bubble–probe interactions or be they intermittent bursts –
that are only found by one of the methods. We will now introduce the two employed
methods and explore whether the different features in the bubble-recognition methods
are relevant from a statistical point of view.

3.3.1. Threshold method

The threshold method detects the bubbly spikes in the signal by a threshold on
the derivative of the signal. A typical hot-film signal of a passing bubble contains a
sudden decrease of the voltage if a bubble arrives at the probe and a sudden increase
of the voltage as it leaves the probe (see figure 6). The threshold method assumes
that a bubble is present at the hot-film probe if the derivative of the signal is below a
certain negative value. Comparable methods sometimes combined with a threshold on
the amplitude were used by Marié, Moursali & Tran-Cong (1997), Lance & Bataille
(1991), Panidis & Papailiou (2000) and Wang & Ching (2001).

The key quantity for the threshold method is obviously the value of the chosen
threshold, aiming at a satisfactory detection performance. We tried various values for
the threshold. The influence of the exact threshold value on the structure functions,
the ESS plots, and the power spectral density (PSD) is depicted in figures 8 and 9.
The figures show that the influence of the value of the threshold on the second-order
structure functions and the PSD is limited. In contrast, the influence of the value
of the threshold on the ESS plots and the fourth-order structure functions is more
pronounced.

Eventually, we took 26.4 Vs−1 as threshold value for the derivative. This value is
based on the following consideration. In figure 10, the PDFs of the minima of the
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Figure 8. Results for a flow with α = 1.5 % and Re ≈ 9 × 104 in the case where the used
threshold to find the bubbly spikes was −21.6Vs−1 (pentagram), −24.0 Vs−1 (squares),
−26.4V/s (triangles down), −28.8V/s (triangles up), −31.2V/s (diamonds). (a) Plot of D2/U 2

z

vs. rz/L and its local slope (inset). The dashed line corresponds to a slope of 0.7, which is
the typical value given for the (intermittent) scaling of the second-order structure function.
(b) Plot of D4/U 4

z vs. rz/L and its local slope (inset). The dashed line corresponds to a slope
of 1.28, again the typical (intermittent) scaling exponent for fourth-order structure functions.
(c) Extended self-similarity (ESS) plot of D2/U 2

z vs. D3/U 3
z and its local slope (inset). The

dashed line corresponds to a slope of 0.7. (d) ESS plot of D4/U 4
z vs. D3/U 3

z and its local slope
(inset). The dashed line corresponds to a slope of 1.28.

derivatives of the bubbly-spike training data (to be defined below) and the minima of
the derivatives of the water training data are shown. As the PDFs show some overlap,
it is not possible to choose a value for the threshold that gives an entirely correct
recognition. However, by decreasing the value of the threshold, more water and fewer
bubbles would be recognized correctly. As later it is shown that non-detected bubbly
spikes do have a large influence on the ESS plots and the spectra, we prefer to select
a threshold that recognizes the bubbly spikes correctly rather than the water parts of
the signal. With the threshold value 26.4 Vs−1 (dashed line), this property is achieved.

3.3.2. Pattern recognition

The pattern-recognition algorithm is based on the observation that bubble–probe
interactions result in a typical pattern or shape of the hot-film signal (Luther & Rensen
2004). The algorithm consists of an optimal signal decomposition using adaptive
wavelet transform (Saito & Coifman 1994) and a classification of the decomposed
data by a neural-network-based trained classifier (Kohonen 1995). The algorithm
requires training data, i.e. data sequences from which it is known that they belong



Effect of bubbles on developed turbulence 167

–0.5 0 0.5 1.0 1.5 2.0 2.5

–8

–7

–6

–5

–4

–3

log10(ν*)

lo
g 1

0(
P

S
D

)

0 1 2

–4

–3

–2

log10(ν*)
lo

g 1
0(

P
S

D
/ν

*–
5/

3 )

Figure 9. Power spectral density (PSD) and compensated PSD (inset) vs. the dimensionless
frequency ν∗ = νUz/L of a flow with α = 1.5 % and Re ≈ 9 · 104 in case that the used threshold
to find the bubbly spikes was −21.6 V/s (pentagram), −24.0 V/s (squares), −26.4 V/s (triangles
down), −28.8 V/s (triangles up), −31.2 V/s (diamonds). Hardly any difference between the
curves is seen.
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Figure 10. The PDF of the minimum of the derivative of manually selected hot-film signal
parts of bubble-probe interactions (circles) and the PDF of the minimum of the derivative of
manually selected hot-film signal parts that belong to the water phase (squares) of a flow with
α = 2.9 % and Re ≈ 9 × 104 . The dashed line corresponds to the threshold value of 26.4Vs−1

that is used in the threshold method for bubble detection.

either to bubbly spikes or to water velocity signal parts. We obtained the training data
by selecting by eye – based on our experience with simultaneous stereoscopic imaging
and probe-signal detection reported in § 3.2 – at least 400 data signal parts belonging
to bubble–probe interactions and 400 data signal parts belonging to the water phase
for each measurement series. The algorithm was trained for each measurement series
separately using the corresponding training data set. The trained algorithm is finally
used to detect bubble spikes in hours of probe data series.

Obviously, the selection of training data by eye may give erroneous sets of training
data, in particular, as our experience is built on simultaneous stereoscopic imaging
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Threshold method Pattern recognition

Gas fraction Bubbles Water Bubbles Water

0.5 98.1 98.6 99.2 90.5
0.7 97.1 99.6 100 85.9
1.0 99.0 97.9 99.0 74.5
1.5 98.9 92.4 99.1 83.3
2.0 99.3 92.2 98.9 81.3
2.9 99.6 90.9 99.6 82.9

Table 3. The percentages of correctly recognized signal parts for flows with different
gas fractions.

and probe-signal detection in a flow with much smaller Reynolds number (Rensen
et al. 2004). A better way would be to perform simultaneous hot-probe and optical
fibre measurements at the same position so that we know for sure whether a bubble
had been around or not. We are working on such a set-up, but as we will show in the
following, the present results are already robust and reliable.

3.3.3. Validation

To validate both bubble-detection algorithms, we used the training data of the
pattern-recognition algorithm. The training data of both the bubbly parts and the
water parts of the signal were separately fed into both algorithms. For each class,
the percentage of correctly recognized bubbles was determined. The results are
summarized in table 3.

The percentages of 98 % to 99 % bubbly-spike detection for both methods appear
to be very promising. However, the recognition of the water parts by the pattern
recognition method is less accurate than by the threshold method. This is probably
because the pattern recognition assumes that the water velocity can be represented
by a typical pattern, which may be a misconception. For the same reason, probably
fewer water parts are recognized correctly by the pattern-recognition method than
bubbly spikes. The table shows that the water detection by the threshold method is
also less accurate than the bubbly-spike detection by this method.We stress again that
our focus must be on correct bubble detection, as non-detected bubble spikes have
a larger impact on PDFs and structure functions than water parts taken out of the
signal erroneously.

At the moment, it is not possible to give a more accurate estimate of the
accuracy of both bubbly-spike-detection algorithms for the turbulent two-phase-
flow measurements in the tunnel. Validation of the presence of a bubble on the probe
by optical inspection from outside the tunnel is not possible, because the bubbles
block the optical path. Also, using the gas fraction estimate from the hot-film data,
like Lance & Bataille (1991) did, is not reliable in our case, as we (Rensen et al. 2004)
showed that the hot-film does not give the correct gas fraction in our application.

What are the long-term prospects of the two methods employed? The threshold
method cannot be improved as figure 10 shows overlap between the two distributions.
In contrast, from our point of view, the pattern-recognition method has more potential
as it can be further improved, e.g. by using other training data, or by adapting it
in such a way that it does not assume that the water parts of the signal can be
represented by a typical pattern. As stated above, the only way to obtain suitable
training data is to supply the hot-film probe with a second measurement device that is
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capable of distinguishing bubbles from water, such as an optical fibre, and to obtain
training data in that way. (Of course, if such a combined device can be realized
and used during the whole measurement, a bubbly-spike-detection algorithm will no
longer be required.)

3.3.4. Gas fraction and dead-time fraction estimate

Both the threshold method and the pattern-recognition method give only the
data point in the signal around which a bubbly spike is located. Once these positions
are detected, the beginning and the end of the distortion must still be determined. The
beginning of a distortion was set at 8 ms before the beginning of the falling flank in the
neighbourhood of the found bubbly-spike location that showed the largest decrease
of the hot-film signal. The end point was set at 8 ms after the end of the rising flank
that followed the beginning of the spike and that showed the largest increase of the
hot-film signal. The buffers of 8 ms were used to correct for small misdetections in
the determination of the beginning and the end of a bubbly spike. Assuming that the
bubble rise velocity relative to the water was of the order of 25 cm s−1 (Clift et al.
1978) and that the downward water velocity was 20 cm s−1 relative to the probe, a
bubble only travelled a distance of the order of 0.4 mm with respect to the probe in
this period. This is about a factor of 10 smaller than the bubble size. Therefore, we do
not expect to lose substantial parts of the water velocity data of the bubbles’ wakes
owing to the use of the buffer. The influence of the length of the buffer can be seen in
figure 11. The figure shows that the results converge for buffer times longer than 4.2 ms.

The dead-time of a bubble–probe interaction signal is defined as the time between
the beginning and the end of the distortion. The residence time of a single bubble
is the time between the beginning of the falling flank and the beginning of the
rising flank that were used in the determination of the dead-time of the signal. The
dead-time fraction and the gas fraction can be derived by summing all dead-times
and residence times and dividing them by the total measurement time (Bruun 1995).
In figure 12, the gas fraction and the dead-time fraction of the signal obtained from
the hot-film signals by the threshold method and the pattern recognition are shown
as function of the gas fraction measured by the U-tube. For both methods, there is a
roughly linear relation between both the gas fraction and the dead-time fraction and
the gas fraction measured by the U-tube. However, the gas fraction obtained from the
hot-film signal is a factor of about 4 higher than the gas fraction measured by the
U-tube.

What is the origin of this deviation? The most plausible explanation is that the
gas fraction is overestimated because of erroneous labelling of water parts of the
signal as bubbly spikes. This is supported by the finding that the gas fraction estimate
obtained from the hot-film signal is changed from 5.5 % to 10 % when the threshold
used in the threshold method for bubbly-spike detection is changed from −31.2 Vs−1

to −21.6 Vs−1 for a flow with a gas fraction of 1.5 % and Re =9 × 104. However,
further (smaller) effects may contribute. (i) Errors in the precise estimate of the
residence times of the bubbles on the probe may bias the gas fraction estimate as
well. (ii) The size of the hot-film probe is finite (typically the order of the size of the
bubbles) and not pointwise. To obtain the local gas fraction from a time series, a
point measurement tool would be required. It may be expected that the gas fraction
measured by a hot-film with a length l is overestimated by a factor of the order of
1 + l/〈Rb〉, where 〈Rb〉 is the mean bubble radius. However, as of our case l/〈Rb〉 ≈ 0.5,
this effect cannot explain the factor of 4. (iii) The gas volume percentage measured
by the U-tube is a global parameter, while the gas fraction measured by the hot-film
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Figure 11. Results for a flow with α = 1.5 % and Re ≈ 9 × 104 in the case where the time
buffers around the detected bubbles have a length of 0 s (circles), 1.7 × 10−3 s (diamonds),
4.2 × 10−3 s (triangles up), 8.3 × 10−3 s (squares), and 1.7 × 10−2 s (triangles down). (a) Plot of
D4/U 4

z vs. rz/L and its local slope (inset). The dashed line corresponds to a slope of 1.28.
(b) Plot of D4/D

4/3
3 vs. D3/U 3

z and its local slope (inset). The dashed line corresponds to a
slope of −0.05.

probe is a local one. It may be that the difference between those two gas fractions
contributes to the overestimate as well. Again, this effect cannot explain the factor of
4 difference. Indeed, an independent measurement of the gas fraction in the centre of
the tunnel with an optical-probe gave only deviations of the order of 10 % from the
results with the U-tube.

To mark the data points that belong to bubbly spikes, it is convenient to have a
phase-indication function as described in Bruun (1995). The phase indication vector
ξ = {ξi}N

i = 1 is defined such that

ξi =

{
1 fluid,

0 bubbly spike,
(3.2)

where N denotes the total number of samples of the time series.
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Figure 12. Plot of the gas fraction (solid lines) and the dead-time fraction of the signal
(dashed lines) obtained from the hot-film signal by the threshold method (squares) and the
pattern recognition (circles) vs. the gas fraction, α, measured by the U-tube. The dashed-dotted
line corresponds to fraction= αU-tube.

3.3.5. Influence of non-detected bubbly spikes

As neither bubbly-spike detection methods detect all bubbly spikes, it is important
to investigate the effect of non-detected bubbly spikes on the final results. For this
purpose, some of the bubbly spikes detected by the threshold method were labelled as
water fluctuations. The effect of these spikes on the results can be seen in figures 13
and 14. The figure shows that leaving a fraction of less than 10 % of the bubbly
spikes in the signal hardly affects the second-order structure function and the PSD
function. In contrast, it has an effect on the fourth-order structure function and on
the ESS plots, i.e. leaving only 2 % of the detected bubbles in the signal already gives
rather different results.

When all bubbly spikes are left in the signal, the second-order structure function
and the PSD function are also affected. Figure 14 shows that in this case a scaling
exponent close to −8/3 is obtained in the PSD function. It is curious that this number
is so close to the power law found by Lance & Bataille (1991). We have no reason to
believe that Lance & Bataille (1991) did not carry out the bubble threshold method
properly. It may well be coincidence that these numbers are so close.

From figure 13(c, d), we also have to conclude that, in ESS plots, bubbly spikes in
structure functions, of different order do not cancel out, as one may have hoped. The
reason is that the bubbly spikes have a much larger impact on higher-order structure
functions than on lower-order ones.

Though we know that both algorithms used in this study leave some bubbly spikes
undetected, it is our belief that there are no better bubbly-spike-detection algorithms
available at the moment. We realize that some of the results, especially the higher-
order structure functions and the ESS plots, may be influenced by bubbly spikes in the
signal. Nevertheless, we are able to show robust results at least for the second-order
structure functions and the PSD function, as these results are not very sensitive to
some remaining bubbly spikes.

3.4. Structure functions, ESS and PDFs

In this subsection, we show how we processed the gapped data to obtain structure
functions. The calculation of PDFs and ESS plots was performed in the same way.
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Figure 13. Results for a flow with α =2.9 % and Re= 9 × 104 in case that 0% (squares), 2%
(diamonds), 5% (circles), 10% (triangles), and 100% (pentagrams) of the found bubbly spikes
were left in the signal. In other words, 100% (squares), 98% (diamonds), 95% (circles), 90%
(triangles), and 0% (pentagrams) of the detected bubbly spikes were eliminated from the signal
through the mask function ξ , equation (3.2). (a) Plot of D2/U 2

z vs. rz/L. (b) Plot of D4/U 4
z

vs. rz/L. (c) Plot of D2/U 2
z vs. D3/U 3

z and its slope (inset). The dashed line corresponds to a
slope of 0.7. (d) Plot of D4/U 4

z vs. D3/U 3
z and its slope (inset). The dashed line corresponds

to a slope of 1.28.

The pth-order longitudinal structure function of the velocity is

Dp(rz) = 〈|(uz(x + rz, t) − uz(x, t)|p〉, (3.3)

where uz(x, t) is the local vertical water velocity at a point in space x at time t .
Measurements at different instances in time were converted to measurements at
different spatial positions using Taylor’s hypothesis, rz = Uz · τ , where τ is the time
difference between samples that are compared and Uz the mean downward velocity
of the water flow.

Using the notation of (3.2) and Taylor’s hypothesis, the structure function of a
bubbly flow signal can be obtained by

Dp(rz = Uzτ ) =

N−τ∑
i=1

ξiξi+τ |uz,i − uz,i+τ |p

N−τ∑
i=1

ξiξi+τ

. (3.4)
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Figure 14. PSD, PSD divided by ν∗−5/3 (left-hand inset), and PSD divided by ν∗−8/3 (right-
hand inset) vs. the dimensionless frequency ν∗ = νU/L for a flow with α = 2.9 % and Re=
9 × 104 in the case where 100% (squares), 98% (diamonds), 95% (circles), 90% (triangles), and
0% (pentagrams) of the found bubbly spikes were eliminated from the signal. The upper inset
clearly shows that a −8/3 power law is obtained once all bubbly spikes are left in the signal.

The robustness of (3.4) is validated using test data. The test data are obtained
by taking a single-phase flow signal and gapping it artificially. We used the phase
indication function of a two-phase flow signal to gap the single-phase flow signal in
a realistic way. In figure 15, we can see the resulting fourth-order structure function
and the fourth-order compensated ESS plot. The figure shows that taking out parts
of the single-phase flow hardly affects the structure function, nor the ESS plot. (Note
the extremely well resolved scales of the left insets.) Therefore, we conclude that the
effect of the gapping is negligible for the structure functions and the ESS plots. It is
obvious that the same holds for the PDFs.

3.5. Power spectra

The standard method for obtaining spectra from continuous time series is the Welch
method (Welch 1967). Here, however, we have incomplete time series and Welch’s
method has to be modified. We fill the bubbly gaps by means of linear interpolation
and apply Welch’s average periodogram. The results obtained for the test data (see
§ 3.4) can be seen in figure 16(a).

Although the results of this test seem to be satisfactory at first sight, filling the gaps
by means of linear interpolation has some influence on the results. That influence
is highlighted in the insets of figure 16(a), which show the compensated spectrum
and the ratio of the complete spectrum and the gapped spectrum. It can be seen
that the gapping has a selective effect on the spectrum at higher frequencies, so that
the slope of the spectrum becomes modified. For an analysis focusing on the scale-
resolved effect of bubbles on turbulence, this shortcoming of the method is clearly
not acceptable.

Consequently, a second method must be applied to estimate the spectra. This
second method is an autoregressive time series model. A simple autoregressive model
expresses the time series uz(t) as a linear combination of the value of a white noise
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Figure 15. Results of a single-phase flow with Re= 9 × 104 in the case of processing a
complete time series (squares) and a time series that was artificially gapped (diamonds). To
gap the data the phase indication function of a two-phase flow signal with a gas fraction of
α = 2.9 % was used. (a) Plot of D4/U 4

z vs. rz/L and its local slope (right-hand inset). The
dashed line corresponds to a slope of 1.28. (b) Compensated ESS plot of F4 = D4/D

4/3
3 vs.

D3/U 3
z and its local slope (right-hand inset). The dashed line corresponds to a slope of −0.05.

The left insets show the ratio of the results for the gapped and the complete signal. Note
the well-resolved scale of the y-axes of the left-hand insets; the structure functions for the
complete and for the gapped signal basically agree.

process ε(t) and a finite number of lagged values of the time series. The nth-order
autoregressive process, AR(n), is defined by

uz(t) + α1uz(t − 1) + · · · + αnuz(t − n) = ε(t), (3.5)

where α1 to αn are the parameters of the model.
To find the parameters αk we applied the Matlab ARX routine that uses the least-

squares method without windowing, also known as the covariance method. Once the
parameters of the model are known, the spectra can be obtained. For more details
on AR-modelling, refer to Ljung (1999).
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Figure 16. Results of processing the complete single-phase data (squares) and data that were
artificially gapped. To gap the data, phase indication functions of two-phase flow with gas
fractions of α = 1.0% (circles), α = 2.0% (triangles), and α = 2.9% (diamonds) were used.
(a) Power spectral density function obtained by the Welch’s averaged periodogram method. In
the right-hand inset the compensated spectrum is shown. The window length was 212 samples,
the overlap of the windows was 211 samples, and no windowing function was used. The left
insets show the ratio of the results for the gapped and the complete signal. Both insets clearly
show that there is a frequency drift in the performance of the Welch algorithm for gapped
data, so that the slope of the spectrum becomes modified. (b) Power spectral density function
obtained by AR(40)-modelling. In the right-hand inset the compensated spectrum is shown.
The left-hand insets show the ratio of the results for the gapped and the complete signal.
Both insets demonstrate that there is no frequency drift with this method, and slopes therefore
remain unchanged, therefore making this method the method of choice for our application.
The time series under consideration has a length of 20 min and is of a single-phase flow with
Re =9 × 104.

First, we show that for a continuous signal the ARX routine is as powerful as
the Welch model. Figure 17 demonstrates that there is good agreement between the
AR-model and Welch’s average periodogram. Note that the AR method suppresses
the noisy peaks present in the PSD.

Next we come to the gapped signals. In order to deal with the gaps, we used
multiple-experiment modelling, i.e. the time-intervals between successive bubble–probe
interactions were considered as separate experiments. The parameters of the model
were estimated using all separate experiments simultaneously. The multi-experiment
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Figure 17. PSDs for a continuous times series, in order to demonstrate that in that case the
Welch’s averaged periodogram (triangles) method and the AR(40)-model (squares) give the
same results. The right-hand inset shows the compensated spectrum. The left-hand inset shows
the ratio of the PSD estimate of Welch’s averaged periodogram and the AR(40) model. The
signal under consideration is a hot-film anemometer velocity signal of 20min of a single-phase
flow with Re= 9 × 104.

AR modelling is applied to the test data. The results are shown in figure 16(b). The
figure shows good agreement between the results of the gapped and the non-gapped
signal, when the phase indication function used belonged to a two-phase flow signal
with a gas fraction of α � 2.0 %. The result for the gapped signal deviates very
slightly from the result for the non-gapped signal, when a phase indication function
of a two-phase flow with a gas fraction of α = 2.9 % was used, but no selective drift
in a certain frequency domain as in the Welch method is seen. The interarrival time
between bubbles becomes shorter in the case of higher gas fractions. An AR(n) model
requires the length of the segments to be at least (n − 1)/2 samples. No segments that
are shorter will be used for the modelling. As a consequence, the performance of the
algorithm becomes worse for high gas fractions. We conclude that the AR-method
gives a good estimate of the PSD of gapped data up to a gas fraction of α = 2.0 %.
In particular, no frequency drift occurs as with the Welch method.

4. Results
4.1. PDF

The most direct tool for investigating the intermittency is to look at the PDFs of the
velocity increment �Uz(rz). When intermittency is present, the PDFs evolve from a
Gaussian distribution for large scales towards stretched exponentials for decreasing
rz (e.g. Frisch 1995; Tabeling et al. 1996; Pope 2000). To ensure that the standard
deviation of the PDFs is equal to 1, we rescale the velocity increments,

s =
�Uz(rz)

〈(�Uz(rz))2〉0.5
. (4.1)

In figures 18 and 19, we can see PDFs of the velocity increments s as defined in (4.1)
for two different gas fractions α = 1.5 % and α = 2.9 % and different distances rz for
the case where the bubbly spikes are detected by either the threshold method or the
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Figure 18. PDFs of the velocity increments s for a single-phase flow with Re ≈ 9 × 104 on the
scales rz ≈ 8η (squares), rz ≈ 64η (circles), rz ≈ 512η (triangles) and rz = L = 4500η (diamonds).
The chosen scale on the s-axis is the same as in the next figure to allow for a comparison
between single- and two-phase flow.
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Figure 19. PDFs of the velocity increments s for flow with Re ≈ 9 × 104 and (a, b) α = 1.5 %
and (c, d) α = 2.9% on the scales rz ≈ 8η (squares), rz ≈ 64η (circles), rz ≈ 512η (triangles), and
rz = L = 4500η (diamonds). To detect the bubbly spikes in the signal, both (a, c) the threshold
method and (b, d) the pattern recognition method were applied.

pattern-recognition method. The corresponding skewnesses and flatnesses are given
in table 4. The figures and the table show that PDFs of the different flows are almost
identical on large scales rz = L, rz ≈ 512η and even rz = 60η. On the very small scales,
rz = 8η, differences can be seen between the single-phase flow and the two-phase flow.
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Threshold method Pattern recognition

Function r Single phase α = 1.5% α = 2.9% α = 1.5% α = 2.9 %

S 8η 1.90 2.10 2.02 2.33 2.42
64η 1.74 1.73 1.72 1.67 1.70
512η 1.63 1.65 1.65 1.65 1.65

L = 4500η 1.59 1.62 1.61 1.62 1.61

F 8η 4.77 7.01 5.95 10.62 11.42
64η 3.79 3.73 3.66 3.41 3.58
512η 3.16 3.29 3.27 3.28 3.29

L = 4500η 2.98 3.11 3.07 3.10 3.08

Table 4. Skewness S and flatness F of the various PDFs shown in figures 18–19.

The PDFs of the two-phase flows show an increase of the intermittency on the small
scales compared to the single-phase flow. The increase is comparable for the two
different gas fractions under consideration. This finding is remarkable, as it suggests
that already a relatively small fraction is sufficient to change the statistical properties
of the flow, and adding extra bubbles does not have a large effect. We will find this
features again in all structure functions and ESS plots that we will consider later.
The lowest gas percentage we analysed was α = 0.5 %. The transition with respect to
the statistical properties of bubbly flow as compared to single-phase flow therefore
already seems to happen for bubble concentrations lower than 0.5 %.

This finding also suggests that undetected bubbly spikes, indeed, are not a major
problem. If so, there would be a drift in the statistical properties of the signal with
increasing bubble concentration, as, of course, more bubbles would mean a larger
probability of undetected spikes.

At the very small scales, rz = 8η, the changes are not equal for the two bubbly-spike
detection methods. With the present data material and detection techniques there is
no way of saying which method would be the more correct one. As already shown
in the validation section (§ 3.3.3), the two different methods identify different parts of
the signal as bubbly spikes, though the overlap is, of course, considerable.

We think that the asymmetry in the PDFs obtained by applying the threshold
method is introduced by the threshold method itself. The threshold method detects
bubbly spikes using a threshold on the negative derivative of the signal. In § 3.3.3, we
showed that the method labels some water parts as bubbly spikes. These water parts
contain a relatively large decrease of the water velocity. The misclassification of those
signal parts is probably causing the asymmetry, as these water parts are filtered out
from the signal while those with a relative large increase of the water velocity are left
in the signal. This explanation of the asymmetry is supported by the finding that the
asymmetry is the other way round when a positive threshold on the derivative of the
hot-film signal is used to detect the bubbly spikes.

4.2. Structure functions

In figures 20 and 21, the second- and fourth-order structure functions and their local
slopes can be seen for the case when the bubbly spikes are detected by either the
threshold method or the pattern-recognition method. The results for the second-order
structure function are similar for both methods. Both figures show an increase of the
energy for increasing gas fractions. This increase of the energy is non-uniform, i.e. it is
more pronounced on small scales than on large scales. Correspondingly, the slope is
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Figure 20. (a, b) Second-order structure functions and (c, d) their slopes for flow with Re ≈ 9 ×
104 and gas fractions of α = 0% (squares), α = 0.5% (triangles down), α = 0.7% (triangles
left), α =1.0% (circles), α = 1.5% (pentagrams), α = 2.0% (triangles up), and α = 2.9 %
(diamonds). The dashed lines correspond to a slope of 0.7. To detect the bubbly spikes in the
signal, both (a, c) the threshold method and (b, d) the pattern recognition method were applied.

reduced. This finding corresponds qualitatively with the numerical results of Mazzitelli
et al. (2003a, b). It is consistent with our findings on the PDFs, too, which also show
more activity on small scales, whereas the large scales remain unchanged. We again
note, as already in section 1, that there are differences between experiments and
numerics: Obviously, the bubbles in experiment are not point-wise, as model in the
numerics of Mazzitelli et al. (2003a, b), but have an extension of on average of several
Kolmogorov scales η, thus showing vortex shedding and even shape oscillations. All
these effects could have an influence on the results which is not considered in the
numerics. However, as the typical bubble radius is about 10–20η and thus not too far
from the the viscous subrange (VSR), from our point of view, the dominant effect of
the bubble remains a rather localized forcing due to the bubble’s buoyancy.

One difference with the numerical simulation of Mazzitelli et al. (2003a, b) is that
here we do not see a decrease of the energy on large scales as found in those papers.
An origin of this difference may be that in contrast to the numerical simulations, here
we fixed the velocity of the different flow and not the total energy. Owing to gas lift,
more energy is required to preserve the same water velocity in our two-phase flow.

Figure 20 shows that the gas fraction does not seem to have a large influence on
the value of the slope. Once the gas fraction is beyond α = 0.5 %, the slope remains
unchanged, just as the PDFs did. Unfortunately, we do not have any measurements
between α = 0 and 0.5 %, to study the transition from single-phase to two-phase flow.
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Figure 21. (a, b) Fourth-order structure functions and (c, d) their slopes for flow with Re ≈ 9 ×
104 and gas fractions of α = 0% (squares), α = 0.5% (triangles down), α =0.7% (triangles
left), α = 1.0% (circles), α = 1.5% (pentagrams), α =2.0% (triangles up), and α = 2.9 %
(diamonds). The dashed lines correspond to a slope of 1.28. To detect the bubbly spikes in
the signal, both (a, c) the threshold method and (b, d) the pattern-recognition method were
applied.

The results for the fourth-order structure function (figure 21) shows the same
behaviour as the second-order structure function, i.e. a non-uniform increase of the
energy and the same slope for all two-phase flow cases. However, on small scales, some
differences can be seen between the two bubbly-spike detection methods. Both figures
also show a change in the slope at rz/L ≈ 10−3. This change is due to the application
of the low-pass filter with a cut-off at 300 Hz which corresponds to rz/L ≈ 10−3. The
minimum in the local slope of log10(D4(r)/U 4

z ) obtained with the pattern-recognition
method, see figure 21, seems to be an artefact to us; we have no explanation for that.

4.3. ESS

Structure functions of flow with a low Reynolds number often do not show any
scaling with the space variable rz. However, Benzi et al. (1993), Briscolini et al. (1994)
and many others have shown that even in the case of low Reynolds number, the flow
can have pronounced scaling properties, namely when plotting structure functions of
order p vs. the third-order structure function rather than vs. the space variable rz.
This property is called extended self-similarity (ESS). Using extended self-similarity
plots, scaling can be found over a much wider range than for the situation where
the structure functions are plotted versus the scale variable rz, but not below 10η.
Usually, 〈|�Uz(rz)|3〉 instead of |〈�Uz(rz)

3〉| is used in ESS plots, because of the poor
statistical convergence of |〈�Uz(rz)

3〉|, and we do so, too.
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Figure 22. (a, b) ESS plots of the second-order structure functions and (c, d) the fourth-order
structure function and their slopes (insets) for flow with Re ≈ 9 × 104 and gas fractions of
α = 0% (squares), α = 0.5% (triangles down), α = 0.7% (triangles left), α = 1.0% (circles),
α = 1.5% (pentagrams), α = 2.0% (triangles up), and α = 2.9% (diamonds). The dashed lines
in the upper plots correspond to a slope of 0.7 and those in the lower plots correspond to a
slope of 1.28. To detect the bubbly spikes in the signal both (a, c) the threshold method and
(b, d) the pattern-recognition method were applied.

In figure 22, we compare the second- and fourth-order ESS plots for single-phase
and two-phase flow. For single-phase flow, we recover the well-known scaling ESS
exponents 0.70 and 1.28 in the ISR and in the large scale range, see e.g. Arneodo
et al. (1996) or Briscolini et al. (1994), Frisch (1995), Grossmann et al. (1997b). In the
case of two-phase flow, this very scaling is found on the largest scales, but is lost
towards smaller scales, with even quantitatively similar deviations within both bubble-
detection schemes. Thus, the extended self-similarity property is destroyed in bubbly
flow. This result is consistent with our earlier findings on the PDFs and the structure
function itself. Indeed, it is intuitive that the ESS property is lost once rising bubbles
force the turbulence on smaller scales. Note, however, that another buoyancy-driven
turbulence, namely thermally driven turbulence, still enjoys the property of extended
self-similarity, though with different scaling exponents (Benzi et al. 1996).

The results for the fourth-order ESS plots show the same trend as the second-order
ESS plots. Again, the standard slope 1.28 survives only on the largest scales, but is lost
on smaller ISR scales, with little difference between the cases with different bubble
concentration. The deviation between the results of the two different bubbly-spike
detection methods is again slightly larger in the fourth-order moments than in the
second-order moments.
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Figure 23. (a, b) Compensated ESS plots of the second-order structure functions and (c, d)
the fourth-order structure function for flow with Re ≈ 9 × 104 and gas fractions of α = 0 %
(squares), α = 0.5% (triangles down), α =0.7% (triangles left), α = 1.0% (circles), α = 1.5 %
(pentagrams), α = 2.0% (triangles up), and α =2.9% (diamonds). The dashed lines correspond
to (a, b) intermittency corrections of 0.03 and (c, d) −0.05. To detect the bubbly spikes in the
signal both (a, c) the threshold method and (b, d) the pattern-recognition method were applied.

For better visualization of the intermittency effects in ESS plots, Grossmann et al.
(1997a) have employed compensated ESS plots. In figure 23, we replot the data of
figure 22 in this compensated way, which reveals better the stronger intermittency
properties on the smaller scales for the two-fluid case. Again, this is consistent with
what we found for the PDFs and the structure functions itself.

4.4. Spectra

We now come to the effect of the bubbles on the spectra. Though the spectrum, in
principle, contains the same information as the second-order structure function, in
practice, the transformation from one to the other is non-trivial, and finite size effects
are important (Lohse & Müller-Groeling 1995, 1996). As spectra are the most common
way to represent the effect of bubbles on developed turbulence, we also give them here.

In figure 24, the power spectra density plots as obtained by Welch’s averaged
periodogram method can be seen for the case where the bubbly spikes are detected
by either the threshold method or the pattern-recognition method. Figure 25 shows
the same as figure 24, but in that figure the power spectral density is obtained by the
auto-regressive modelling, which in § 3 we had judged to be the more reliable method,
as spectra of gapped time series do not suffer from frequency dependent drifts.

For single-phase flow, the spectra show the Kolmogorov −5/3 scaling, including
a small bottleneck effect at the transition between ISR to VSR (Falkovich 1994;
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Figure 24. Power spectral density plots and compensated power spectral density plots (insets)
as obtained by Welch’s averaged periodogram method for flow with Re ≈ 9 × 104 and gas
fractions of α =0% (squares), α = 0.5% (triangles down), α = 0.7% (triangles left), α = 1.0 %
(circles), α = 1.5% (pentagrams), α = 2.0% (triangles up), and α =2.9% (diamonds), for the
case where the bubbly-spike detection was performed by (a) the threshold method and (b) by
the pattern recognition.
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Figure 25. Power spectral density plots and compensated power spectral density plots (insets)
as obtained by auto-regressive modelling for flow with Re ≈ 9 × 104 and gas fractions of
α = 0% (squares), α = 0.5% (triangles down), α = 0.7% (triangles left), α = 1.0% (circles),
α = 1.5% (pentagrams), α = 2.0% (triangles up), and α = 2.9% (diamonds), for the case
where the bubbly-spike detection was performed by (a) the threshold method and (b) by the
pattern recognition.

Lohse & Müller-Groeling 1995). As is well known, intermittency effects are not very
visible in spectra.

For the two-phase flow, we measure a strong spectral energy increase at large
frequencies (corresponding to small scales) and a mild spectral energy increase at small
frequencies (corresponding to large scales), leading to a less steep slope as compared
to −5/3. This finding is in accordance to the above findings on the second-order
structure function, where we also found a large increase on small scales and a small
increase on large scales, see figure 20.

Our experimental finding on the spectra resembles the numerical finding on the
effect of two-way coupled point-bubbles of Mazzitelli et al. (2003a, b), where a strong
increase on small scales and thus a reduced slope was found, too. However, in those
numerical simulations also a spectral energy decrease was detected at large scales.
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The reason for this difference between experiment and numerics is that in the former
case the flow velocity was kept constant, whereas in the latter case the energy input
(excluding the input by the bubbles) was kept constant.

The two-phase flow spectra again show the feature (as the PDFs, structure functions
and ESS plots) that the largest transition is between the single-flow case α = 0 % and
α = 0.5 %, whereas adding further bubbles shifts the spectra only slightly further up.

5. Conclusions
The influence of bubbles on a fully developed turbulent flow has been investigated

by performing hot-film anemometry measurements in the Twente water tunnel. We
used gas fractions of 0.5 % up to 2.9 % and a Reynolds number of 9 × 104. We obtai-
ned probability distribution functions, structure functions, extended self-similarity
(ESS) functions, compensated ESS functions, and power spectra of the water velocity
time series.

Our results for both the structure functions and the power spectral density functions
show an increase of the energy for two-phase flow compared to single-phase flow,
which is more pronounced on small scales than on large scales. This corresponds
qualitatively with the results of Mazzitelli et al. (2003a). This result proved to be
robust for different signal-processing methods and misdetections of a few per cent of
the disturbances in the hot-film signal that are caused by the sudden change of the
heat transfer when a bubble touches the hot film. We did not observe a progressive
substitution of the scaling exponent of −5/3 by a scaling exponent of −8/3 in the
power spectral density functions for increasing gas fractions as found by Lance &
Bataille (1991). This may be rationalized by the different bubblance parameter b in
the present work and the work of Lance & Bataille (1991). In the latter work, the
slope of −8/3 is only found when the energy associated to the perturbations of the
liquid is dominated by pseudoturbulence, i.e. large b > 1, whereas here we have b < 1.
The reason for the large bubblance parameter b in the measurements of Lance &
Bataille (1991) is that these authors use relatively large bubbles and weak turbulence.
However, as illustrated by table 1, associating a spectral slope −5/3 with a regime
with b < 1 and a slope −8/3 with a regime b > 1 is too simplistic; there are various
experiments and numerical simulations with b = ∞ and a spectral slope close to −5/3
nevertheless.

A possible solution to the discrepancy between the −5/3 and −8/3 scaling might
be different properties of the near field directly in the wake behind the bubble and
the far field away from the bubbles. (For visualizations of the wake see e.g. Brücker
1999; de Vries et al. 2002; Lima-Ochoterena & Zenit 2003; Veldhuis et al. 2005.) The
results of Larue de Tournemine (2001) and Cartellier & Rivière (2001) are consistent
with this interpretation. The idea here would be that in-spite of the small dead time
our signal, processing method could cut out part of the near field caused by the
wake immediately behind the bubble, which may be responsible for the −8/3 scaling.
Whether this is indeed the case can only be answered by future experiments.

From a qualitative point of view, i.e. not focusing on scaling exponents but on the
frequency-dependent modifications of the spectrum, the results of Lance & Bataille
(1991), the experimental results here or the numerical results of Mazzitelli et al.
(2003a, b) are quite similar. When comparing figure 15 of Lance & Bataille (1991)
or figure 3 of Mazzitelli et al. (2003b) with figure 25 here, we find that the bubbles
cause a strong energy enhancement on small scales and a small energy reduction
at large scales (or only a weak enhancement in the experiments here owing to the
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different experimental procedure, namely, holding the flow velocity rather than the
energy input constant).

Both the PDFs and the compensated ESS plots show that intermittency is enhanced
because of the presence of bubbles. Once bubbles are present in the flow, the
dependence on the actual bubble concentration is weak. The ESS plots show that,
towards small scales, the extended self-similarity property is destroyed in turbulent
bubbly flow.

Finally, we would like to caution the reader. Though we have applied two different
bubbly-spike detection methods to find the disturbances caused by bubble–probe
interactions in the hot-film signals, and though visual inspection of the results of both
methods suggests that only a few per cent of the bubbly spikes were not detected, we
cannot check the exact performance of either of the two methods, owing to a lack
of more reliable verification methods. Therefore, our results on the ESS plots and
the intermittency may be influenced by the presence of some bubbly spikes in the
signals. This is supported by the finding of modest differences in the results for the
two different bubbly-spike detection methods for higher-order structure functions
and intermittency corrections. We, however, hope to have demonstrated that at least
qualitatively our results are robust.

How to further improve on bubble detection in turbulent two-phase flow? Our
strategy is the following. First, we will try simultaneous measurements of hot-probe
and optical fibre measurements at the same position. The latter method is known to
hardly disturb the flow (Cartellier 1992; Mudde & Saito 2001) and thus allows for an
unambiguous detection of the bubbles at the probe. Thus, we will obtain an unbiased
training set of bubbly-spike events, with which we plan to ‘train’ the neural-network
type pattern-recognition scheme. The trained scheme can then detect the bubbles in
long hot probe time series of the same type in which no extra optical probe has been
employed. Obviously, once a hot-probe is stably combined with an optical fibre meas-
urement at the probe position, all bubble-detection schemes will become redundant.
Up to that time, the community will have to cope with imperfect measurements.
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